22-CS-11

M.Sc. I SEMESTER [MAIN/A.T.K.T.] EXAMINATION DECEMBER 2022 - JANUARY 2023

COMPUTER SCIENCE

Paper - I

[Computer and Communication Fundamentals]

[Max. Marks : 75]	[Time : 3:00 Hrs.]	[Min. Marks : 26]
Note : Candidate should wr	ite his/her Roll Number at the preseri	bed space on the question paper.
	rite anything on question paper.	
Attempt five questio	ns. Each question carries an internal c	hoice.
Each question carries		

- Q. 1 a) What is Digital and Analog Computers ? Describe the major components of (10 marks) computer with diagram. (5 marks) b) Explain error detecting code.

OR

- a) What is Binary Code ? Explain BCD, ASCII and Excess-3 code with example (4 marks) (11 marks)
- b) Convert the following
 - i $(24.36)_{10} = ()_2$ ii) $(125.23)_{10} = ()_{16}$ iv) $(425)_8 = ()_{16}$ iii) $(235.62)_8 = ()_2$
 - $(110010)_2 = ()_{gray}$ vi) $25 = ()_{353}$ V)
 - vii) $(312)_{16} = ()_2$
- Q.2 a) How can you represent a binary -ve integers and also explain why 2's compliment method is used for subtraction of binary numbers. (6 marks) b) Solve the following using complement method -(9 marks)
 - i) (+17) + (-26)
 - ii) $(-1110)_2 + (-1011)_2$
 - iii) $(-47) + (-31)_2$

OR

Simplify the following Boolean Expression in SOP and POS forms and Implement using Universal gates, showly used size to over (15 marks) $\mathbf{F} = \mathbf{A} \cdot \overline{\mathbf{B}} \cdot \overline{\mathbf{C}} + \overline{\mathbf{A}} \cdot \mathbf{B} \cdot \overline{\mathbf{C}} + \mathbf{A} \cdot \mathbf{B} \cdot \overline{\mathbf{C}} + \mathbf{A} \cdot \mathbf{B} \cdot \mathbf{C}$

P.T.O.

Q. 3 a)	What is combinational logic circuit ? Explain with example.	(7 marks)	
b)	What is binary parallel adder ? Design a logic circuit for adding tw 4 bit numbers. OR	vo binary (8 marks)	
a)	Explain encoders ? Design octal to binary encoder.	(7 marks)	
b)	What is Multiplexer and Demultiplexer ? Design a 8 : 1 multiplexer. (8 marks)		
Q. 4 a)	What is Sequential logic circuit? Design a JK flip-flop.	(8 marks)	
b)	Give difference between Meady and Moore models.	(7 marks)	
	OR		
a)	What is the difference between synchronous and Asynchronous counter. (7 marks)		
b)	What is Registers. Explain the classification of registers in brief.	(8 marks)	
Q. 5 a)	What is computer network ? Explain different type of computer networks. (7 marks)		
b)	What are network topologies ? Explain any three.	(8 marks)	
	OR		
a)	What is bounded and unbounded media?	(7 marks)	
b)	Give difference between OSI and TCP/IP model.	(8 marks)	